Friday 4 December 2020

DESHAYESITES VOLGENSIS BLOCK

From Russia with Love — a lovely iridescent block of ammonites with Deshayesites volgensis (Sasonova, 1958), and Aconeceras (Sinzovia) trautscholdi (Sinzow. 1870) with their natural pink, blue and purple candy colouring. These beauties are from Lower Cretaceous, Aptian, 120 - 112 million-year-old outcrops near Shilovka, Ulyanovsk Region, Russia. This lovely block was collected by and is in the collections of the deeply awesome Emil Black.

Aptian deposits near the Volga River between Ul'yanovsk and Saratov have been studied for more than a century. The age of lower Aptian deposits was traditionally established based on changing ammonite assemblages of the family Deshayesitidae.

The diverse assemblage of heteromorphic ammonites, Ancyloceratidae, inhabitants of relatively deep basins, has made it possible to propose a new scheme of ammonoid zonation in the lower Aptian epipelagic deposits of the Russian plate.

Many of the identified ancyloceratids were established here for the first time. The analysis of coexisting deshayesitids and heteromorphs enabled a correlation of stratigraphic schemes for the monomorphic Deshayesitidae and heteromorphic Ancyloceratidae. The described generic taxa and species are Volgoceratoides I. Michailova et Baraboshkin, gen. nov., V. schilovkensis I. Michailova et Baraboshkin, sp. nov., Koeneniceras I. Michailova et Baraboshkin, gen. nov., K. tenuiplicatum (von Koenen, 1902), K. rareplicatum I. Michailova et Baraboshkin, sp. nov.

In few sections of the Saratov Volga area (central part of the Russian Platform), representing both offshore and nearshore lithofacies of the epicontinental Middle Russian Sea, researchers have recognized simultaneous changes in ammonite and belemnite successions. The significant influence of anoxic events on faunal turnovers in marine communities is well-established. However, many studies are focused on the impact of anoxic conditions on benthic organisms, not on the hunter-gatherers living higher up in the sea column. This means that coeval changes in pelagic cephalopod assemblages remain relatively poorly understood.

Belemnites, represented by the late members of the family Oxyteuthididae, are common in the interval directly preceding the anoxic event, but totally disappear with the onset of the black shale deposition. We see a reduction in the shell size of the Deshayesites ammonites across the mudstone – black shale boundary (maximum shell diameter of adults reduces from ∼20 cm to 7–8 cm).

Some other ammonites become numerous (Sinzovia) within the black shale interval or show the first occurrence in it (Koeneniceras and Volgoceratoides). In our opinion diminishing of Deshayesites shell size during the early Aptian OAE could be caused by the coupling of palaeoenvironmental factors such as progressive warming and regional input of brackish water. Preliminary results of carbon isotope studies of aragonite deriving from the ammonite nacreous layer are also provided.

The significant influence of anoxic events on faunal turnovers in marine communities is well-established. However, many studies are focused on the impact of anoxic conditions on benthic organisms, not on the hunter-gatherers living higher up in the sea column. This means that coeval changes in pelagic cephalopod assemblages remain relatively poorly understood. The maximum diameter on the Deshayesites shown here in the photo by Emil Black is 70 mm.

Rogov, Mikhail & Shchepetova, Elena & Ippolitov, Alexei & Seltser, Vladimir & Mironenko, Aleksandr & Pokrovsky, Boris & Desai, Bhawanisingh. (2019). Response of cephalopod communities on abrupt environmental changes during the early Aptian OAE1a in the Middle Russian Sea. Cretaceous Research. 10.1016/j.cretres.2019.01.007.

E. Yu. Baraboshkin and I. A. Mikhailova. New Stratigraphic Scheme of the Lower Aptian in the Volga River Middle Courses. Stratigraphy arid Geological Correlation, Vol 10, No 6, 2002, pp 603-626 Translated from Stratigrafiy a Geologicheskaya Korrelyatsiya, Vol 10, No 6, 2002, pp 82-105